MID-SEMESTER EXAMINATION B. MATH II YEAR, II SEMESTER 2012-2013 ANALYSIS IV

Max. Score:100

Time limit: 3hrs.

1. Consider the set of polynomials p satisfying the condition $\int_{0}^{1} p(x)dx = 1$ as a subset of C[0, 1] (with the usual supremum norm). Is this set totally bounded? Justify. [15]

2. Is the set of all functions of the type $\sum_{j=0}^{N} a_j [\sin(x)]^{2j}$ (where $N \ge 1$ and $a'_j s \in \mathbb{R}$) dense in C([-2, 2]) (with the usual supremum norm)? Justify. [15]

3. Consider the initial value problem y' = f(x, y), y(0) = 1/3 where f is continuous function : $[-1, 1] \times [-1, 1] \rightarrow [-3, 3]$ which has continuous partial derivative w.r.t. y at every point satisfying $\left|\frac{\partial f}{\partial y}\right| \leq 1$ at every point. Show that this problem has a unique solution on $[-\delta, \delta]$ where $\delta = \frac{2}{9}$. [15]

4. If f is coninuously differentiable on (a, b) and if f' is non-decreasing show that f is convex. [15]

5. Prove that the vector space spanned by $\{z^n : n = 0, 1, 2, ...\}$ is not dense in the space C(T) (where $T = \{z \in \mathbb{C} : |z| = 1\}$ and C(T) is given the supremum metric).

Hints: prove that
$$\int_{0}^{2\pi} f(e^{it})e^{it}dt = 0$$
 for every polynomial $f(z) = \sum_{j=0}^{k} a_j z^j$.

Show that this is false for the function $f(z) = \overline{z}$. [20]

6. Show that there does not exist independent elements f_1, f_2, \dots in C[0, 1] which span C[0, 1]. [20]

Hint: consider the subspaces spanned by $\{f_1, f_2, ..., f_n\}$ (n = 1, 2...) and apply Baire Category Theorem.